If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying -36h3 + 120h2y + -100hy2 = 0 Reorder the terms: -100hy2 + 120h2y + -36h3 = 0 Solving -100hy2 + 120h2y + -36h3 = 0 Solving for variable 'h'. Factor out the Greatest Common Factor (GCF), '4h'. 4h(-25y2 + 30hy + -9h2) = 0 Factor a trinomial. 4h((-5y + 3h)(5y + -3h)) = 0 Ignore the factor 4.Subproblem 1
Set the factor 'h' equal to zero and attempt to solve: Simplifying h = 0 Solving h = 0 Move all terms containing h to the left, all other terms to the right. Simplifying h = 0Subproblem 2
Set the factor '(-5y + 3h)' equal to zero and attempt to solve: Simplifying -5y + 3h = 0 Reorder the terms: 3h + -5y = 0 Solving 3h + -5y = 0 Move all terms containing h to the left, all other terms to the right. Add '5y' to each side of the equation. 3h + -5y + 5y = 0 + 5y Combine like terms: -5y + 5y = 0 3h + 0 = 0 + 5y 3h = 0 + 5y Remove the zero: 3h = 5y Divide each side by '3'. h = 1.666666667y Simplifying h = 1.666666667ySubproblem 3
Set the factor '(5y + -3h)' equal to zero and attempt to solve: Simplifying 5y + -3h = 0 Reorder the terms: -3h + 5y = 0 Solving -3h + 5y = 0 Move all terms containing h to the left, all other terms to the right. Add '-5y' to each side of the equation. -3h + 5y + -5y = 0 + -5y Combine like terms: 5y + -5y = 0 -3h + 0 = 0 + -5y -3h = 0 + -5y Remove the zero: -3h = -5y Divide each side by '-3'. h = 1.666666667y Simplifying h = 1.666666667ySolution
h = {0, 1.666666667y, 1.666666667y}
| 7u-20=3(u+4) | | 6x=120 | | p^2=-16 | | 4c^2-12cp+9p^2=0 | | -7(y+5)=-9y-21 | | -5w-9=6(w+4) | | 5x+20x-5=20 | | 4-81x^2=o | | x^2-1.4x+.49=0 | | 2-x-18(-6+9)=-20 | | 5x+20-5=20 | | 3(w+2)=5w-2 | | 11-x+(6)=5 | | -19=2(v-8)-5v | | w^4-16=0 | | 7e^3x=9e^2x | | (3a-5)+(4a-3)=90 | | x+3x+13=101 | | 3g+13=101 | | -21=3y+4(y+7) | | 6+8x-9=45 | | x=-6y | | 2r+14=100 | | x-5=8-2y | | 6x^2-3x-46=839 | | 10=7u+4(u-3) | | 6x^2-3x-46=1594 | | 36+6y=24 | | 6x^2-3x-46=-8 | | x^2+5+2=0 | | 5(x+3)=5x+15 | | 5n^2+19n+12= |